Specific Issues of Economic Capital Management: Economic vs. Regulatory Capital and Business Risk

 $\int_{a} \ln f_{a,\sigma^{2}}(\xi_{1}) = \frac{(\xi_{1} - a)}{\sigma^{2}} f_{a,\sigma^{2}}(\xi_{1}) = \frac{1}{\sqrt{2}}$ $T(x) \cdot \frac{\partial}{\partial \theta} f(x,\theta) dx = M\left(T(\xi) \cdot \frac{\partial}{\partial \theta} \ln L(\xi,\theta)\right) \int_{0}^{\infty} \pi dx$ $T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta)\right) \cdot f(x,\theta) dx = \int_{0}^{\infty} T(x) \left(\frac{\partial}{\partial \theta} \frac{f(x,\theta)}{f(x,\theta)}\right) \pi dx$ $MT(\xi) = \frac{\partial}{\partial \theta} \int_{R_{\theta}}^{T} T(x) f(x,\theta) dx = \int_{0}^{\infty} \frac{\partial}{\partial \theta} \frac{T(x) f(x,\theta)}{f(x,\theta)} dx$

Corinne Neale

Managing Director, Capital Management

Pillar 1: A Regulatory Model for ERM

The IRB Model: Limitations

Many Risks not captured

- Concentration risk
 - Single name
 - Sector (industry, geography)
- Losses driven only by defaults, not by ratings migration

One-size-fits-all within each Basel II-defined asset class (e.g., all residential mortgages subject to the same formula / correlation values; new financial products?)

Only considers one confidence level (i.e., the 99.9%)

Thus, does not address stress scenarios nor tail risk (i.e., what are potential losses beyond 99.9%)

Rigidity of modeling assumptions creates disconnect with true economic capital

Pillar II: Expectations for Risk Management

In a nutshell, the objectives of Pillar II are to:

Compensate for limitations of the IRB Model

Promote **enterprise-wide** measurement and management of risk

Evaluate impact of stress scenarios

ERM: A Model to Evaluate Real World Risks

Quantifying the Impact of Real World Risks

Assumptions:				
Default/Non Default transition matrix	Full Migration	Full Migration	Full Migration	Full Migration
Law of Large Numbers	Law of Large Numbers	Sampling + Stochastic RR	Sampling + Stochastic RR	Sampling + Stochastic RR
Factor Loading as in BIS II pillar I	Factor Loading as in BIS II pillar I	Factor Loading as in BIS II pillar I	Factor Loading From Calibration	Factor Loading From Calibration
1 credit driver	1 credit driver	1 credit driver	1 credit driver	Multi-Factor Model
16,277.59 Loss 99.9%	24,169.17	33,205.06	34,560.70	28,318.34

© 2007 Algorithmics Incorporated. All rights reserved.

Bank ICAAP Results

Source: for this chart

© 2007 Algorithmics Incorporated. All rights reserved.

Banks' ICAAP Content

Current and Project Capital Positions

Risk Appetite:

- Confidence Interval
- Horizon
- Scenario the confidence level corresponds to
- Risks covered by Capital

Quantification technique for each risk

Control process for risks not covered by capital

Risk aggregation techniques used

- Description
- Assumptions
- Limitations

Details of stress and scenarios applied Controls and ICAAP validation process ICAAP and Pillar 1 comparisons Internal use of ICAAP

Algorithmics

Quantification Issues: Concentration

How concentrated is my portfolio?

Possible answers:

- HH Indexes
- Ratio of largest to smallest exposures
- Ratio of Additive UL to Absolute UL
 → this is the only one to capture correlation!

Where are the higher-aggregate concentrations?

• This requires multi-level results?

How do correlations interact with concentrations?

• Only a full EC model can help to articulate this

Modeling Single Name Concentration: An Example

Chart 2. A nongranular portfolio containing an infinitely fine-grained subportfolio Note: Entire portfolio (subportfolio A plus B) is nongranular

Source: Bank of Japan Working Paper Series "An Efficient Monte Carlo Method for a Large and Nongranular Credit Portfolio" Hideaki Higo See: http://www.boj.or.jp/en/type/ronbun/ron/wps/wp06e19.htm

Modeling Single Name Concentration: An Example

A Model – Basel Granularity Adjustment

Quantification Issues: Sector Concentration

The other form is Sector concentration

- "...relates to imperfect diversification across systematic components of risk, namely sectoral factors..."*
- E.g., exposure to the U.S. automobile industry, which might be highly correlated to other sectors (e.g., energy, aluminum manufacturing, consumer finance, etc.)

Multi-factor modeling enables the full capture of correlations across industry/geographic sectors...

- Identify exposures to highly correlated industries or geographies that increase portfolio risk
- Likewise, capture **diversification benefits** that mitigate portfolio risk

*Basel Committee on Banking Supervision, "Studies on credit risk concentration", Working Paper No. 15, Nov 2006

Multi-Factor Modeling

Illustration: The Multi-Factor Variable – Candidates

General State of the Economy

- Composite Leading Indicator
- OECD_CLI
- Industrial Production Index
- Manufacturing Utilization rate

Prices

- Producer Price Index
- Producer Sales Index
- Producer Inventory Index
- Imports

Foreign Trade

- Exports
- Import Price Index
- Export Price Index

Foreign Exchange

- FX Rate Euro/USD
- FX Rate Euro/YEN

Money Markets

- 3-Year Corporate Bond Yields
- Call Rate
- Commercial Paper Rate

Sector / Geography / Business Concentrations

Algorithmics 4

Quantification Issues: Stress Tests

Stress-tests are part of risk management:

Algorithmics

A

Business Risk Assessment Through Stress Tests

Definition:

The risk that, as a result of an external event, some of the bank's business expenses be not covered by the income expected from that business, resulting in a net loss that needs to be funded with capital:

Other Risk Assessments Through Stress Tests

Illustration:

Stress Test 1	Stress Test 2	Stress Test 3	
Shocks to asset correlations	Shocks to credit quality transition probabilities	Shocks to systematic risk	

Other Risk Assessments Through Stress Tests

Results:

The Pillar 1 Model

Managing IRB Capital

Capturing Real World Risks

Stress Testing

Communication of Rrisks

Active Portfolio Management

Pricing and Performance Analysis

13000

12500

ERM: Tools for Management Analysis and Action

Advanced modeling techniques enable the quantification of real world risks across the portfolio

Quantification, in turn, enables financial executives to unlock value:

- Communication internally, with regulators, and to the market about risk profile;
- Active management of the portfolio;
- Pricing decisions and performance analysis; and
- ...Ultimately, creation of economic value and profitable business growth

Communication of Risk

Communicating Risks

© 2007 Algorithmics Incorporated. All rights reserved.

Actively Managing the Portfolio

Evaluating risk contributions across quantiles...but:

- Which cut of the portfolio (sector, geography, business line)?
- Which statistic (e.g., VaR, UL, Expected Shortfall)?
- Which quantiles (e.g., 95%, 99.9%, 99.97%)?

Contact Us

Eric Takigawa

Eric.takigawa@algorithmics.com **Tel** (81) 3 5224 4436

Toru Ohkuni

Toru.ohkuni@algorithmics.com

Tel (81) 3 5224 4437

Corinne Neale

Corinne.neale@algorithmics.com **Tel** (65) 6536 7737